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We study a singular limit of tumbled granular flows in quasi-two-dimensional rotating drums, demonstrating
that the limiting dynamical system, as the shear layer vanishes, belongs to a class of discrete discontinuous
mappings called piecewise isometries. In doing so, we identify a mechanism of mixing, in the absence of the
usual streamline crossing mediated by the flowing layer. By considering the exceptional case of a 50% full
square tumbler, this mechanism �streamline jumping� is related to the horizontal motion of the free surface of
the flow in non-half-full tumblers. The limiting dynamics are quite complex, if not �technically� chaotic.
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I. INTRODUCTION

Chaotic advection, or Lagrangian chaos, is a paradigm
�1� with applications ranging from geophysical transport �2�
to the design of micromixers �3�. When applied to mixing
processes, chaotic advection’s essence lies in maximizing
streamline crossings �1�, an idea that has been formalized
mathematically using linked twist maps �4�.

Achieving chaotic mixing is fundamentally about modu-
lating time-periodic flows, so that streamlines change in time
and cross those at previous times, allowing particles to
smoothly transfer from one streamline to another �1,3,4�.
This approach has also been successfully applied to mixing
in tumbled granular flows �5�. In the latter, streamline cross-
ing occurs as a consequence of the changing length and
thickness of the so-called flowing layer �5� or the time-
varying rotation rate �6�. Here, we demonstrate that, in two
dimensions, these flows can exhibit a related, but fundamen-
tally different, behavior: particles can discontinuously jump
between streamlines. This is because, as we discuss below, it
is physically possible to make the region of streamline cross-
ing vanishingly small.

To elucidate this, we focus purely on the kinematics of
motion in tumbled granular flows, i.e., the motion of par-
ticles in a convex �for our purposes� quasi-two-dimensional
�quasi-2D� �meaning, the thickness is negligible compared to
the height and width� rotating container. Studies have shown
that the mixing and segregation of particulate matter are pre-
dominantly controlled by the geometry of the container �5,6�.
Therefore, a kinematic description of the flow suffices.

The granular matter in the container, a square one being
illustrated in Fig. 1, is assumed to fill a certain fraction � of
the available volume and to be in the regime where particles
are continuously flowing down the free surface, forming a
thin lens-shaped shear layer �the flowing or fluidized layer�,
while the rest of the particles �the bulk or fixed bed� are in
solid-body rotation, about the point C, with the container
�7–9�. Also, we assume that the flow is not fast enough to
deform the free surface to the point where it is no longer flat.

We are interested in the behavior and the predictions of
the mathematical model as the fluidized layer becomes very
thin in the example square tumbler �although the results
carry over to all convex shapes�. Recently, this was briefly
noted in a three-dimensional spherical tumbler �10�, and an
unexpected connection was found to piecewise isometries
�PWIs� �11,12�, a branch of dynamical systems theory. Much
like how linked twist maps are the fundamental underlying
feature of “good” fluid mixing �4�, it now appears that piece-
wise isometries may play a similar role in granular mixing.
Even though these types of mappings do not possess the
stretching property characteristic of chaotic flows �10,11�, we
show that they can nevertheless lead to seemingly chaotic
mixing of particulate matter in a tumbler.

II. CONTINUUM MODEL OF TUMBLED GRANULAR
FLOWS

Although a number of continuum models are available,
depending on the granular phenomenon being studied
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FIG. 1. Diagram of a 70% full square quasi-two-dimensional
tumbler, which has been rotated backward by the dynamic angle of
repose �so that the free surface of the flow is horizontal�, showing
the coordinate system and notation. The thickness of the tumbler is
assumed much smaller than its width and height, so it is not shown.
The boundary of the flowing layer is represented by a dashed curve.
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�13–17�, the simplest one for granular mixing is the kine-
matic model �5,6�. Following the standard approach to cha-
otic advection �1,18�, if we let (x�t� ,y�t�) be a pathline in this
tumbled flow, under which the motion is piecewise defined
�as shown in Fig. 1, with �z�0�, then the dynamic equations
of its evolution in the moving frame take the form

d

dt
x�t� = �vx„x�t�,y�t�,t… , y�t� � − �„x�t�,t… ,

�z�y�t� + h�t�� − ġ�t� , otherwise,
�

�1a�

d

dt
y�t� = �vy„x�t�,y�t�,t… , y�t� � − �„x�t�,t… ,

− �z�x�t� + g�t�� − ḣ�t� , otherwise. �
�1b�

Within the flowing layer, under the assumption that the
depth-averaged streamwise velocity is independent of the
streamwise position �5�, the Eulerian velocity field is

vx�x,y,t� = 2v̄x�t��1 + y/��x,t�� , �2a�

vy�x,y,t� = − �zx�y/��x,t��2, �2b�

where the shape of the flowing layer and the depth-averaged
streamwise velocity in it, respectively, are

��x,t� = �0�t��1 − � x

L�t��2�, v̄x�t� =
�zL�t�2

2�0�t�
. �3�

Note that this model presumes that the streamwise velocity
in the flowing layer depends linearly on the depth, as a first
approximation to the experimentally obtained velocity pro-
file �19–21�. Other flowing layer shapes and velocity profiles
can be derived under different assumptions �6,21,26,27�.
Without loss of generality, we consider only the original
model �5�, since mixing under all kinematic models is quali-
tatively the same �6�.

The maximal depth of the flowing layer �0�t� and the
half-length of the free surface L�t� are known functions of
time alone and are such that �ª�0�t� /L�t� can be assumed to
be a constant independent of time �5�. This experimentally
motivated assumption is termed the geometric similarity of
the flowing layer because, physically, it means that the flow-
ing layer adjusts instantaneously to changes in the contain-
er’s orientation. The model has only one free parameter,
namely, �, which is fitted based on experimental data
�5,6,19�. Once the geometry is specified, the fill fraction �
can also be varied.

For fixed t and ��0, the velocity field �2� has streamlines
shown for two overlapping tumbler configurations in Fig. 2.
For any tumbler geometry, the change from a short thin flow-
ing layer in orientation A to a long thick one in orientation B
results in streamline crossing and hence chaotic advection
�5�.

III. VANISHING FLOWING LAYER LIMIT

Experiments �19� have shown that �0 is typically 5–12
particle diameters, which is much less than the length of the

free surface 2L, so ��1, meaning the limit �→0 is a physi-
cally relevant one. The most important consequence of let-
ting �→0 is that �0→0 also because �	�0 /L and L is finite.
Thus, the flowing layer becomes an infinitely thin interface
as � vanishes, collapsing onto the free surface of the granular
flow.

Also, we can evaluate the mean time-averaged speed of a
particle over the length of the free surface,

V̄surf 	
1

Tf

�

0

Tf 1

2L
�

−L

+L

�vx
2 + vy

2

y=0

dxdt =
�zL̄

�
, �4�

where L̄= �1 /Tf�
0
TfL�t�dt, Tf = �2	 /�z� /n is the flow period,

and n is the number of sides of the tumbler. Consequently,

V̄surf→
 as �→0, since �zL̄ is a finite constant. Then, from
Eq. �2a�, the streamwise simple shear rate is

�̇�x,t� 	
�vx

�y
=

2v̄x�t�
��x,t�

=
�zL�t�2

��x,t��0�t�
=

1

�2

�z�0�t�
��x,t�

. �5�

Since �z�0�t� /��x , t� is bounded away from zero for all x and
t, �̇→
 as �→0. Therefore, in the limit, the flowing layer
becomes an “infinitely strong” shear.

Finally, we assume that when �=0 particles do indeed

traverse the flowing layer instantaneously �V̄surf=
�, but they
leave it at the streamwise position �on the interface� corre-
sponding to the reflection of the position they entered across
the free surface midpoint O �Fig. 1�, as is the case when �
�0 and �0=const. That is, if a particle reaches y=0 at x
=xenter��0�, based on the coordinate system with the origin
at O, at time t= tenter, then it is instantaneously transferred to
x=−xenter. Using the rigid coordinate system with the origin
at C, x̃=−x̃enter+2g�tenter� is the new location of the particle,
where g�t� is the time-dependent horizontal displacement of
O with respect to C. If g�tenter��0, then x̃�−x̃enter, and the
particle will not remain on the same streamline after the
jump.

A

B

FIG. 2. �Color online� To-scale illustration of streamline cross-
ing in a 75% full square tumbler with �=0.2. Blue �solid� and red
�dashed-dotted� curves are streamlines of the flow in tumbler orien-
tations A and B, respectively. Note that they cross in the region
where the flowing layers of the two orientations overlap, but they
do not cross in the bulk. Orientation B is orientation A rotated 22.5°
clockwise.
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IV. OVERVIEW OF THE DYNAMICS

The mixing and segregation of bidisperse granular matter
can be related to the Poincaré section of the kinematic model
of the flow �6�. To this end, in Fig. 3, sample numerical
Poincaré sections �22� are shown for various �’s and �’s in
the example square tumbler geometry.

Although many transitions and bifurcations can occur in
the Poincaré section’s pattern as � and � are varied, the basic
trend is that at ��0.01, for any �, the Poincaré section has
qualitatively reached a consistent pattern �i.e., the number of
elliptic “islands” and their location remains the same for all
�
0.01�. However, �=0.5 is an exception in that the chaotic
region is lost as the flowing layer vanishes, with the islands
dominating the Poincaré section for finite �. Therefore, it is
not only the container’s noncircular shape that induces time-
periodic disturbances leading to chaos when �=0, as conjec-
tured in �23� where this case was studied analytically, but
also the interaction of the fill fraction with the tumbler shape.

V. STREAMLINE JUMPING: THE MECHANISM OF
MIXING FOR ε=0

In the tumbled granular flow, streamlines in the bulk,
where all particles undergo solid-body rotation, are always
arcs of concentric circles; no streamline crossing can occur
there. In the flowing layer of a noncircular tumbler, however,
the changing maximal depth �0�t� modulates the streamlines
in time creating crossings �Fig. 2�. Thus, it may seem that if
the flowing layer vanishes ��→0�, then there cannot be cha-
otic mixing since streamline crossing is impossible. How-
ever, the chaotic regions present for �=0.37 and 0.63 in Fig.
3 clearly show that this is false. Thus, good mixing can be
achieved despite the apparent lack of good conditions for

mixing. But what is the underlying �-dependent physical
mixing mechanism?

In a noncircular container, the free surface moves in time
in a manner parametrically dependent on the fill fraction �6�.
More precisely, the midpoint of the flowing layer O �the
point across which a particle is reflected when �=0� moves
horizontally according to x̃O=g�t�. Hence, upon traversing
the infinitely thin flowing layer, particles do not necessarily
emerge onto another portion of the same streamline; they can
“jump” between different solid-body-rotation streamlines.

This idea is illustrated in Fig. 4 for the example square
tumbler. When �=0.27 �Fig. 4�a��, a particle initially on the
solid blue streamline, when the tumbler is in orientation A,
can jump onto the dashed red streamline upon reaching the
flowing layer at some t�0 �illustrated by the horizontal cyan
arrow�, when the tumbler is in orientation B. The flowing
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FIG. 3. �Color online� 500-period Poincaré sections for three fill fractions of a square tumbler �37% on the top row, 50% on the middle
row, and 63% on the bottom row� and various values of �, starting with �=0.1 �a situation easily realized experimentally�.

A

B

A

B(b)(a)

FIG. 4. �Color online� To-scale illustration of how streamline
jumping can occur in two tumblers with infinitely thin flowing lay-
ers ��=0� but with different fill fractions: �a� �=0.27 and
�b� �=0.5. Note the absence of a streamline jumping mechanism in
�b�. In both, the rotation is clockwise.
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layer’s midpoints in orientations A and B are denoted by a
diamond and a triangle, respectively; notice that these do not
coincide for �=0.27. In Fig. 4�b�, where �=0.5 now, the
midpoint of the flowing layer remains coincident with the
center of rotation of the tumbler for all times, i.e., g�t�
=h�t�	0∀ t. Clearly, no streamline jumping is possible, and
particles are always transferred to the same streamline.
Hence, complex dynamics are not possible in a 50% full
even-sided polygonal tumbler when �=0, confirming the nu-
merical results shown in Fig. 3.

This geometric reasoning is valid for any noncircular tum-
bler, giving a necessary condition for complicated particle
trajectories. Namely, if the displacements of the moving co-
ordinate system g�t�, h�t� are not identically zero at a given
�, then there exists a mechanism of mixing, unrelated to
diffusion �i.e., particle dispersal through random collisions�,
despite the absence of a flowing layer and streamline cross-
ing.

To understand how this mechanism mixes, imagine a line
segment entering the infinitely thin flowing layer parallel to
it. The entire line segment is reflected across O instanta-
neously, and its length remains unchanged. However, this
will almost never be the case. If the segment enters the flow-
ing layer at an angle, each point on is reflected across O at a
slightly different time and tumbler orientation. This shifts the
points on the segment to nearby streamlines, eventually
spreading them further apart than they were initially, which
results in mixing.

VI. CONNECTION TO PIECEWISE ISOMETRIES

When �=0, particles in the flow will always undergo ro-
tations �a type of distance-preserving mapping or isometry�,
occasionally crossing a line of discontinuity �the flowing
layer� that transfers them to another trajectory of solid-body
rotation. According to �12�, this qualifies the limiting dy-
namical system as a PWI. PWIs can exhibit the usual behav-
iors of nonlinear dynamical systems: periodic points, fractal
structures, global attractors, and generally complex dynamics
�10–12�.

However, one crucial difference exists between a PWI
exhibiting complex behavior and a dynamical system exhib-

iting chaotic behavior: in the case of the former the diver-
gence of nearby trajectories is conjectured to be at most al-
gebraic, while in the latter it is exponential �10�,
asymptotically as t→
. Mathematically, this is because �un-
der certain conditions� PWIs have zero topological entropy
�24�, meaning they do not possess the stretching characteris-
tics that are universal of chaotic dynamical systems �4� and
fluid mixing �1,25�. Therefore, even though on a long enough
time scale PWI-type dynamics lead to inherently slower mix-
ing than the usual chaotic dynamics, for short times the op-
posite can be true.

This can be observed in Figs. 3�b�–3�d�. In the 50% full
tumbler, the stretching and folding mechanism is quite weak
�due to the limited streamline crossings, which disappear as
�→0�, as the lack of chaos in these Poincaré sections shows.
Meanwhile, for the 37% and 63% full tumblers, where
streamline jumping �i.e., the PWI-type mechanism� is pos-
sible, the Poincaré sections have large chaotic regions, show-
ing that the PWI-type mixing mechanism dominates here
�28�.

VII. CLOSURE

In the limiting dynamical system governing tumbled
granular flows streamline crossing is impossible, yet chaotic
advection �in a sense yet to be made mathematically precise�
persists due to streamline jumping. This mechanism leads to
complex dynamics in a physical flow without stretching and
folding. Without parallel in the mixing of fluids, the uniquely
granular phenomenon of streamline jumping leads �counter-
intuitively� to good mixing even when the flowing layer is
vanishingly thin. The connection between the kinematics of
granular flow and the mathematics of PWIs discovered here
for quasi-2D tumblers, along with the preliminary results in
�10�, shows that these types of discrete discontinuous dy-
namical systems are a generic and key underlying mecha-
nism in granular mixing.
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